

طريقك إلى انجاح YOUR WAY TO SUCCESS

Reactor Design II

Week 10 Reactor Safety

Saba A. Gheni, Ph.D.

Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

- Chemical Reaction Engineering (CRE) emphasizes safety in reactor design and operation.
- This lecture focuses on case studies of industrial accidents, exploring causes and preventive measures to ensure safety in chemical processes.

كلية الهندسة - COLLEGE OF ENGINEERING

Topics to be Addressed

- Case Studies: Ammonium Nitrate, Monsanto, and T2 Labs Explosions
- - Energy Balance and Heat Effects in Reactors
- - Safety Mechanisms and Preventive Measures
- - Lessons Learned from Industrial Accidents

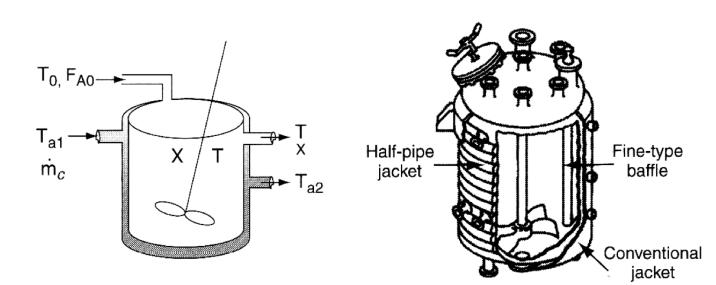
كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- By the end of this lecture, students will be able to:
- - Understand the principles of reactor safety and energy balance.
- - Analyze causes of industrial accidents and their prevention.
- - Apply safety measures in reactor design and operation.
- Learn from case studies to mitigate risks in chemical processes.

كلية الصندسة - COLLEGE OF ENGINEERING

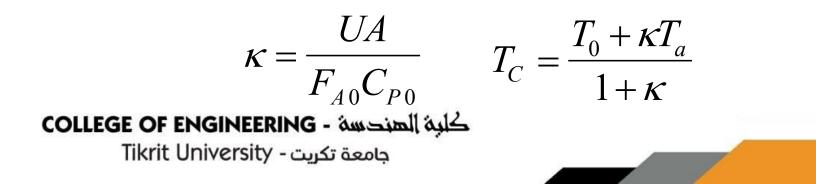
Introduction



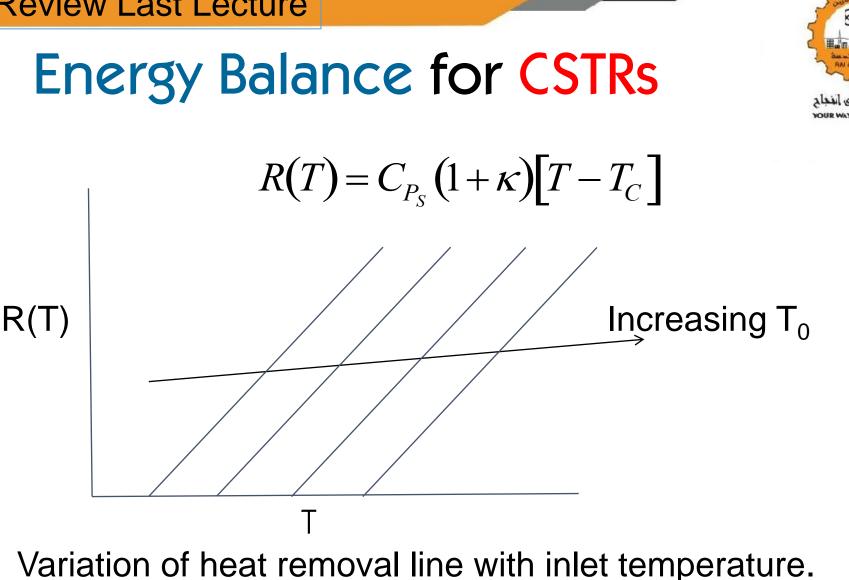
- Understanding energy balance, heat effects, and safety mechanisms is critical for preventing disasters.
- This session covers notable accidents such as the ammonium nitrate explosion, Monsanto explosion, and T2 Laboratories explosion, and lessons learned from these events.

كلية الصندسة - COLLEGE OF ENGINEERING

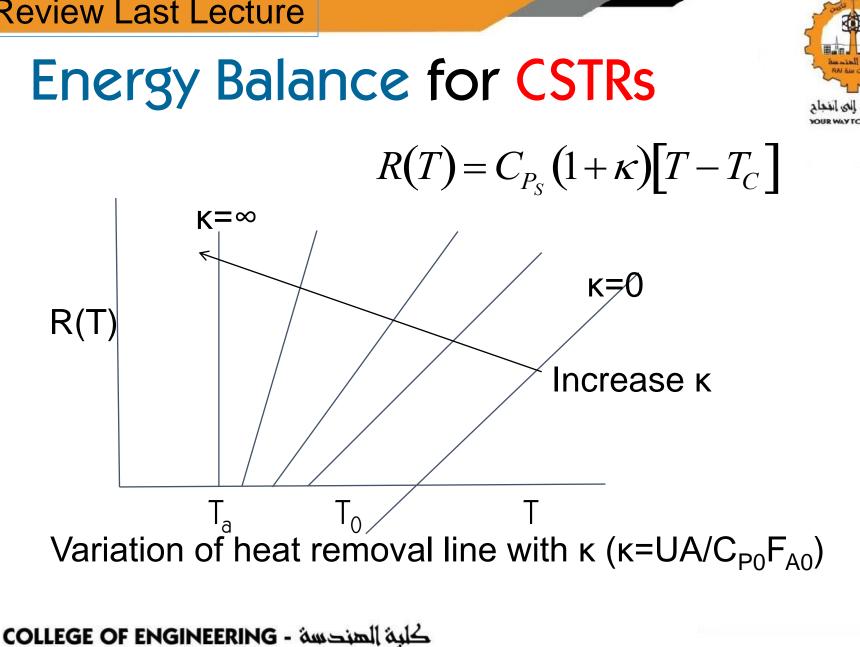
CSTR with Heat Effects



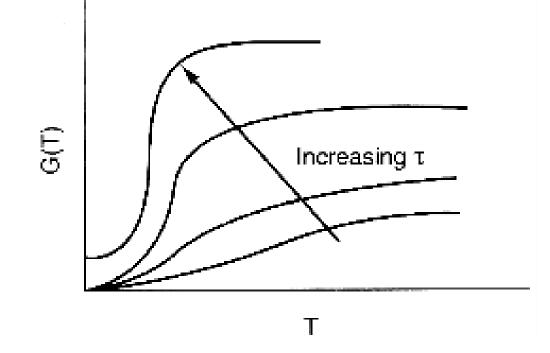
كلبة الهندسة - COLLEGE OF ENGINEERING



$$\frac{dT}{dt} = \frac{F_{A0}}{\sum N_i C_{P_i}} \left[G(T) - R(T) \right]$$
$$G(T) = (r_A V) \left[\Delta H_{Rx} \right]$$
$$R(T) = C_{P_S} \left(1 + \kappa \right) \left[T - T_C \right]$$



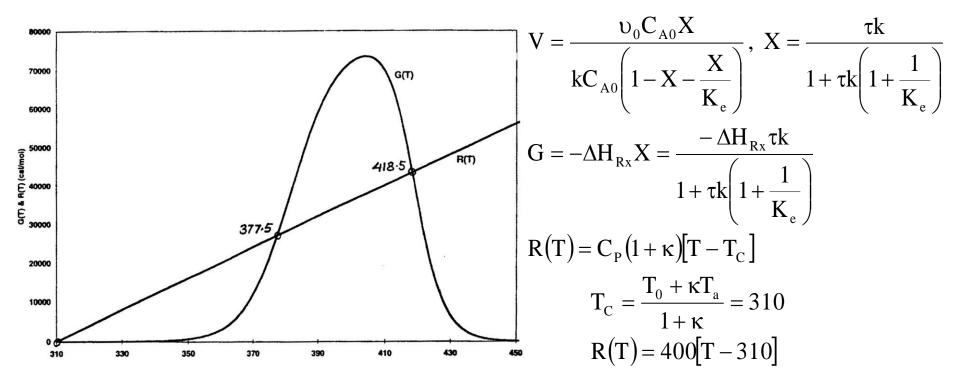
كلية الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University



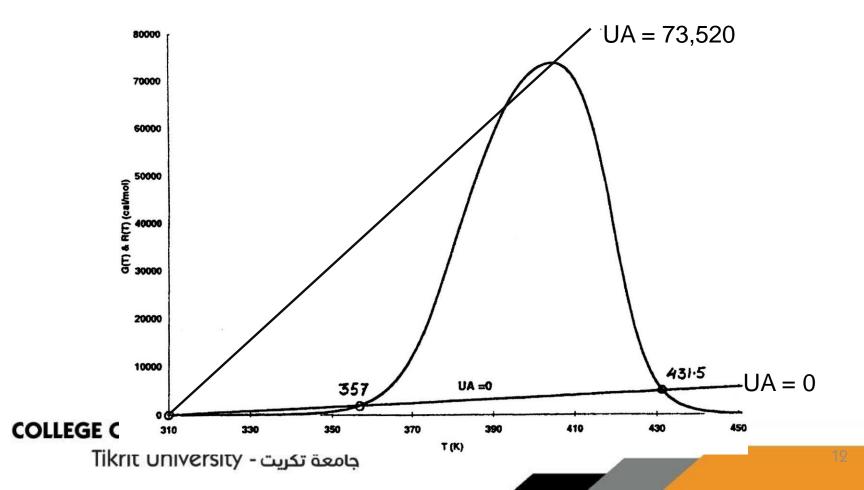
جامعة تكريت - Tikrit University

Multiple Steady States (MSS)

Variation of heat generation curve with space-time.

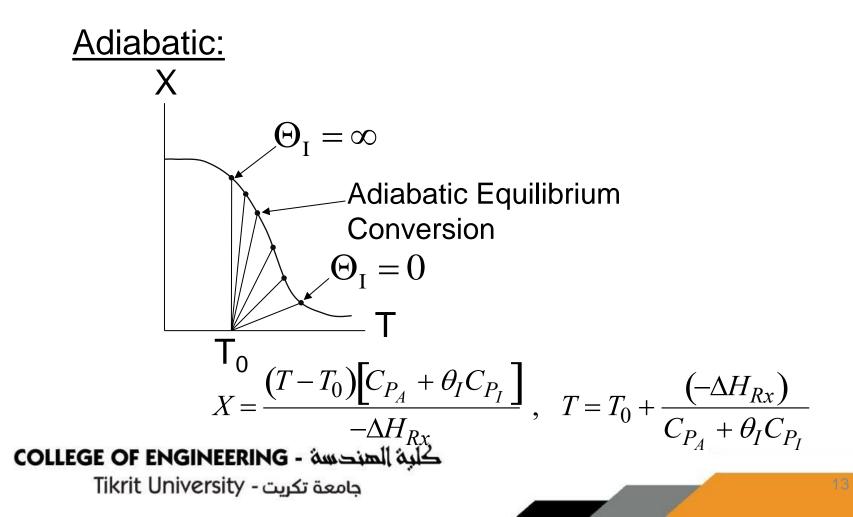

COLLEGE OF ENGINEERING - كلبة الهندسة جامعة تكريت - Tikrit University

Reversible Reaction Gas Flow in a PBR with Heat Effects


طريقك إلى انجاح NOUR WAY TO SUCCESS

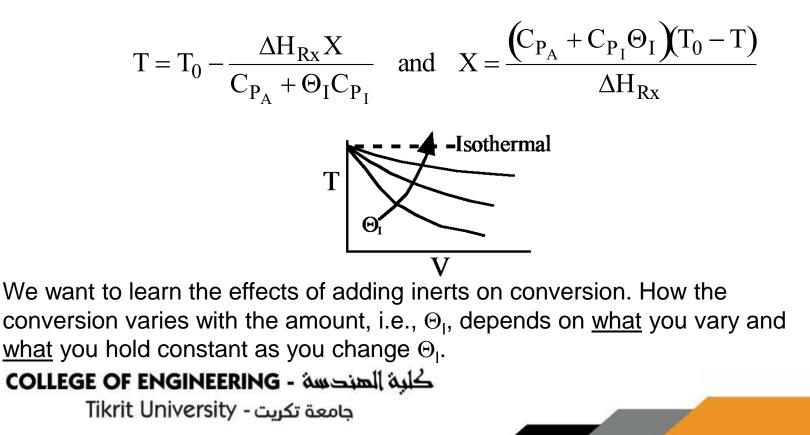
$A \leftrightarrow B$

كلية الصندسة - COLLEGE OF ENGINEERING



Gas Phase Heat Effects

Effect of adding inerts on adiabatic equilibrium conversion


Adiabatic Exothermic Reactions

The heat of reaction for endothermic reaction is positive, i.e.,

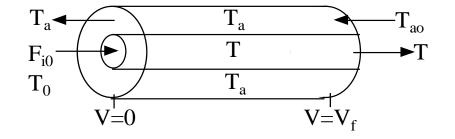
Energy Balance :

A. First Order Reaction

 $\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{-\mathbf{r}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{A0}}}$

Combining the mole balance, rate law and stoichiometry

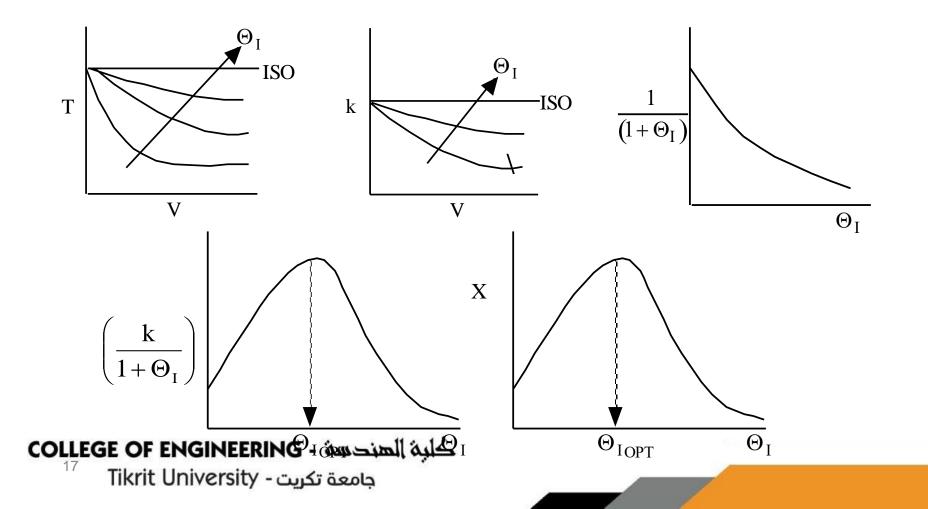
$$\frac{dX}{dV} = \frac{kC_{A0}(1-X)}{v_0 C_{A0}} = \frac{k}{v_0}(1-X)$$


Two cases will be considered Case 1 Constant v_0 , volumetric flow rate Case 2: Variable v_0 , volumetric flow rate

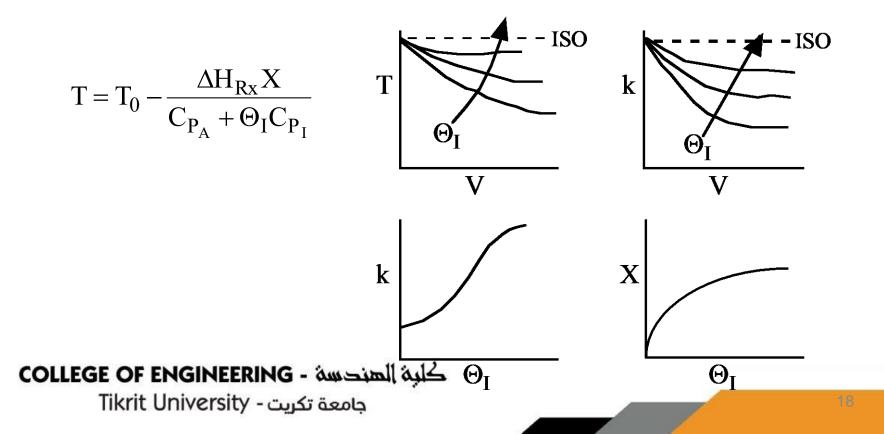
كلبة الهندسة - COLLEGE OF ENGINEERING

A.1. Liquid Phase Reaction

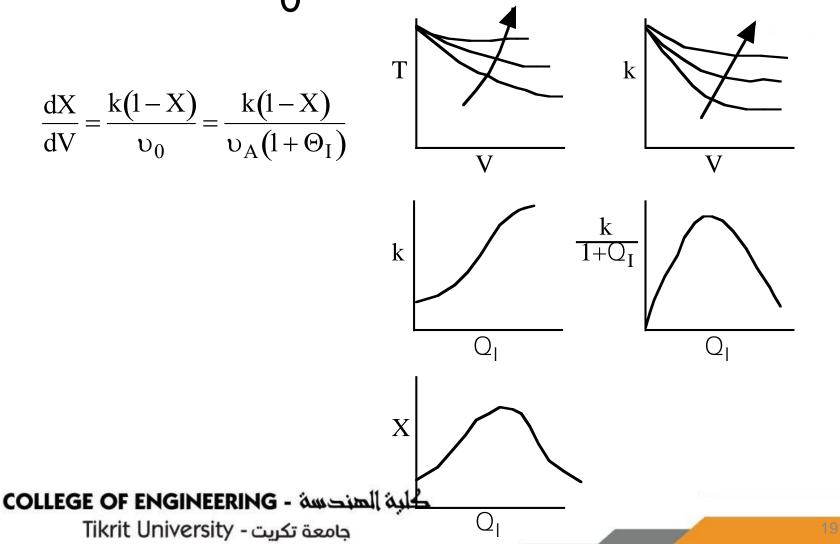
For Liquids, volumetric flow rates are additive. $\upsilon_0 = \upsilon_{A0} + \upsilon_{I0} = \upsilon_{A0} (1 + \Theta_I)$


كلية الهندسة - COLLEGE OF ENGINEERING

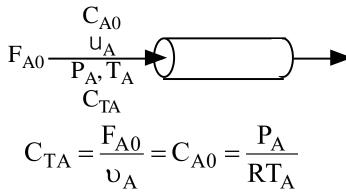
Effect of Adding Inerts to an Endothermic Adiabatic Reaction


What happens when we add Inerts, i.e., vary Theta I??? It all depends whet source success what you change and what you hold constant!!!

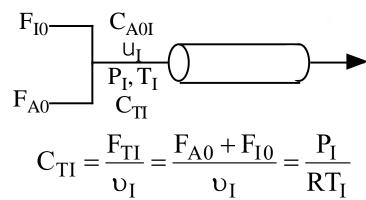
A.1.a. Case 1. Constant υ_0


To keep υ_0 constant if we increase the amount of Inerts, i.e., increase Θ_1 we will need to decrease the amount of A entering, i.e., υ_{A0} . So $\Theta_1 \uparrow$ then $\upsilon_{A0} \downarrow$

A.1.a. Case 2. Constant $v_{A_{i}}$ Variable v_{0}



طريقك إلى أخداح OUR WAY TO SUCCESS



A.2. Gas Phase

Without Inerts

With Inerts and A

Taking the ratio of C_{TA} to C_{TI}

$$\frac{C_{TI}}{C_{TA}} = \frac{\frac{F_{TI}}{\upsilon_{I}}}{\frac{F_{TA}}{\upsilon_{A}}} = \frac{\frac{P_{I}}{RT_{I}}}{\frac{P_{A}}{RT_{A}}}$$

 $\upsilon_{I} = \upsilon_{A} \frac{F_{TI}}{F_{TA}} \frac{P_{A}}{P_{I}} \frac{T_{I}}{T_{A}}$

n

Solving for υ_{I}

We want to compare what happens when Inerts and A are fed to the case when COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت - Tikrit University Nomenclature note: Sub I with Inerts I and reactant A fed Sub A with only reactant A fed

- F_{TI} = Total inlet molar flow rate of inert, I, plus reactant A, $F_{TI} = F_{A0} + F_{I0}$
- F_{TA} = Total inlet molar flow rate when no Inerts are fed, i.e., $F_{TA} = F_{A0}$
- P_{I} , T_{I} = Inlet temperature and pressure for the case when both Inerts (I) and A are fed
- P_A , T_A = Inlet temperature and pressure when only A is fed

$$\begin{split} & C_{A0} = \text{Concentration of A entering when no inerts are presents} \qquad C_{A0} = \frac{F_{A0}}{\upsilon_A} \\ & C_{TA} = \text{Total concentration when no inerts are present} \qquad = \frac{P_A}{RT_A} \\ & C_{TI} = \text{Total concentration when both I and A are present} \qquad = \frac{P_I}{RT_I} \\ & C_{A0I} = \text{Concentration of A entering when inerts A are entering} \qquad = \frac{F_{A0}}{\upsilon_I} \\ & \upsilon_I = \text{Entering volumetric flow rate with both Inerts (I) and reactant (A)} \end{split}$$

كلية الهندسة - COLLEGE OF ENGINEERING

$$\frac{F_{TI}}{F_{TA}} = \frac{F_{A0} + F_{I0}}{F_{A0}} \circ (1 + Q_I) = \frac{1}{\substack{\text{$\widehat{\alpha}$} \\ c_{f} \\ c_{f$$

$$U_{I} = \begin{bmatrix} \dot{e} \\ U_{A} \dot{e} (1 + O_{I}) \frac{P_{A}}{P_{I}} \frac{T_{I} \dot{u}}{T_{A} \dot{u}} \\ \ddot{e} \end{bmatrix}$$

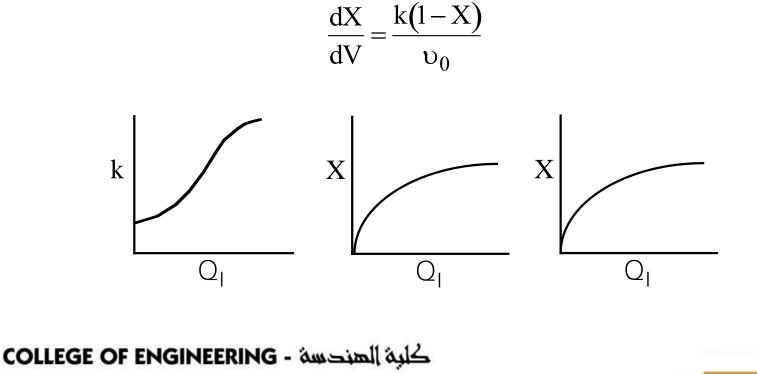
كلية الصندسة - COLLEGE OF ENGINEERING

A.2.a. Case 1

Maintain constant volumetric flow, υ_0 , rate as inerts are added. I.e., $\upsilon_0 = \upsilon_1 = \upsilon_A$. Not a very reasonable situation, but does represent one extreme. Achieve constant υ_0 varying P, T to adjust conditions so term in brackets, [], is one.

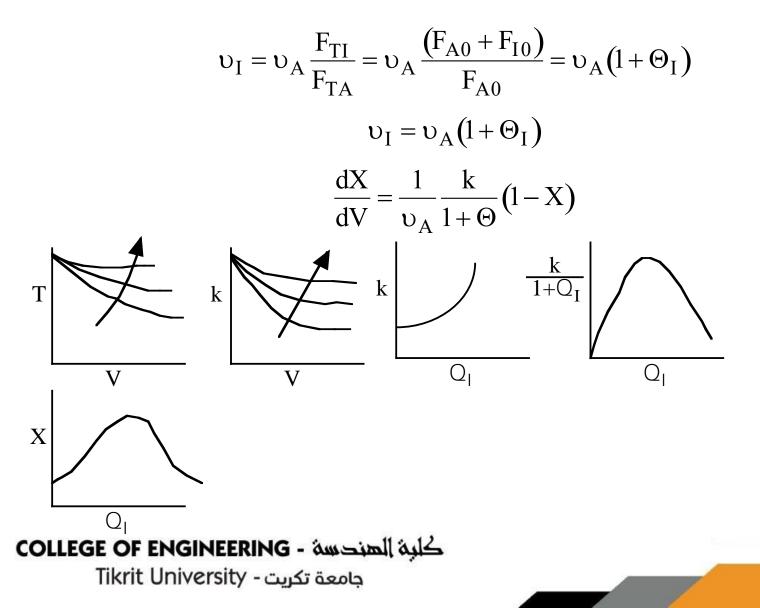
$$\left\lfloor \left(1 + \Theta_{\mathrm{I}}\right) \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{I}}} \frac{\mathrm{T}_{\mathrm{I}}}{\mathrm{T}_{\mathrm{0}}} \right\rfloor = 1$$

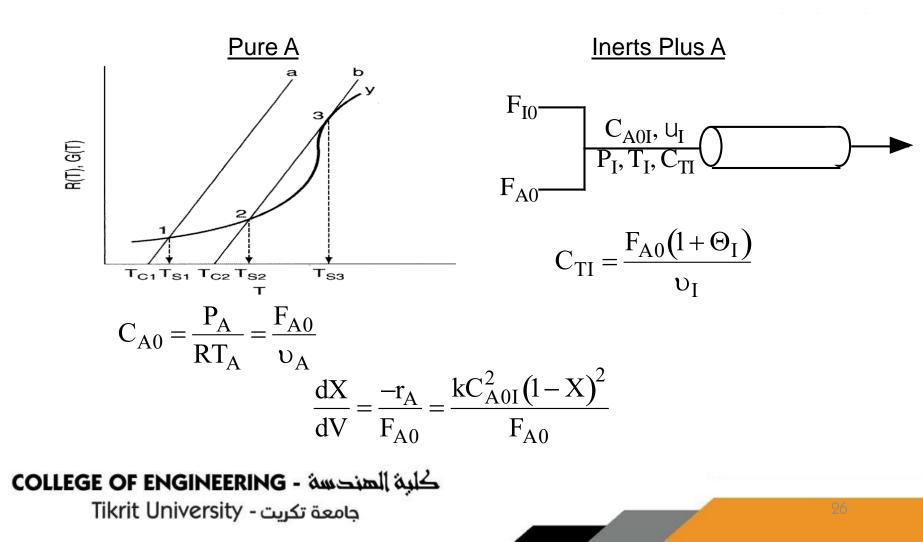
<u>For example</u> if $\Theta_1 = 2$ then υ_1 will be the same as υ_A , but we need the entering pressures P_1 and P_A to be in the relationship $P_1 = 3P_A$ with $T_A = T_1$


$$\upsilon_{I} = \upsilon_{A} \left[(1+2) \bullet \frac{P_{A}}{3P_{A}} \frac{T_{A}}{T_{A}} \right] = \upsilon_{A} \left[3 \bullet \frac{1}{3} \right] = \upsilon_{A} = \upsilon_{0}$$

كلية الصندسة - COLLEGE OF ENGINEERING

A.2.a. Case 1


That is the term in brackets, [], would be 1 which would keep υ_0 constant with $\upsilon_1 = \upsilon_A = \upsilon_0$. Returning to our combined mole balance, rate law and stoichiometry


A.2.b.Case 2: Variable v_0 Constant T, P i.e., $P_1 = P_A$, $T_1 = T_A$

طريقك إلى أنداح NOUR WAY TO SUCCESS

B. Gas Phase Second Order Reaction

B. Gas Phase Second Order Reaction

$$\upsilon_{I} = \upsilon_{A} \left(1 + \Theta_{I} \right) \frac{P_{A}}{P_{I}} \frac{T_{I}}{T_{A}}$$

$$\frac{C_{A0I}^{2}}{F_{A0}} = \frac{\left(F_{A0}/\upsilon_{I}\right)^{2}}{F_{A0}} = \frac{F_{A0}}{\upsilon_{I}^{2}} = \frac{F_{A0}}{\upsilon_{A} \cdot \upsilon_{A} \left(1 + \Theta_{I}\right)^{2} \left(\frac{P_{A}}{P_{I}}\right)^{2} \left(\frac{T_{I}}{T_{A}}\right)^{2}}$$

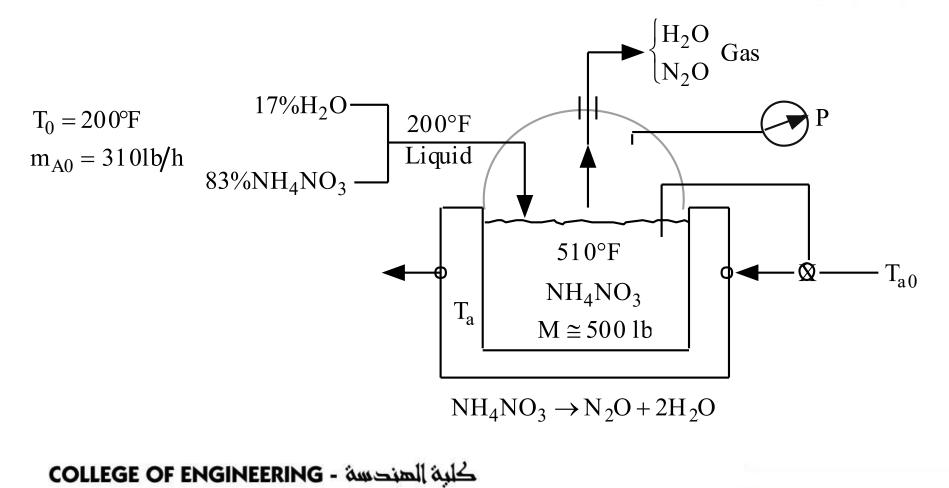
$$= \frac{C_{A0}}{\upsilon_{A} \left(1 + \Theta_{I}\right)^{2}} \left(\frac{P_{I}}{P_{A}} \frac{T_{A}}{T_{I}}\right)^{2}$$

$$\frac{dX}{dV} = \frac{k}{\left(1 + \Theta_{I}\right)^{2}} \frac{C_{A0}}{\upsilon_{A}} \left(\frac{P_{I}}{P_{A}} \frac{T_{A}}{T_{I}}\right)^{2} \left(1 - X\right)^{2}$$

كلية الصندسة - COLLEGE OF ENGINEERING

Case 1 – Ammonium Nitrate Explosion

طريقك إلى اخباح YOUR WAY TO SUCCESS



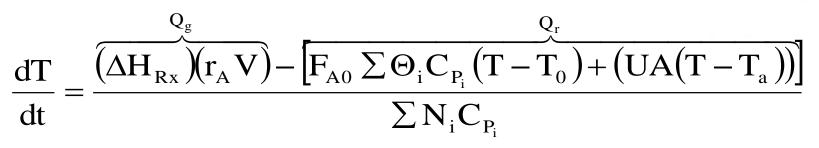
Massive blast at Terra plant kills four.

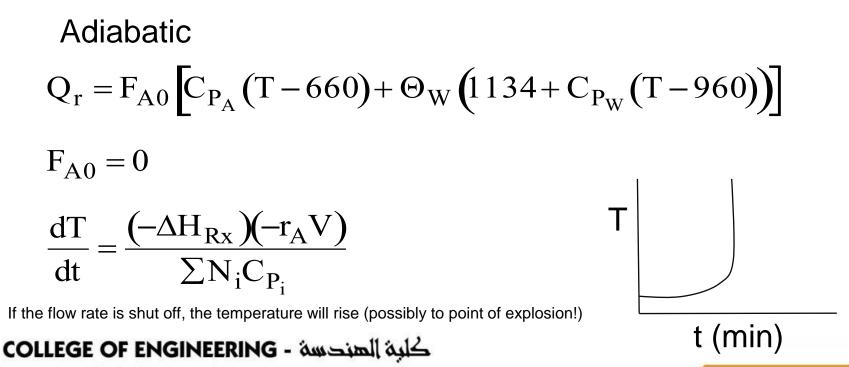
كلية الهندسة - COLLEGE OF ENGINEERING

Example 1: Safety in Chemical Reactors

Example 1: Safety in Chemical Reactors

Only liquid A in the vat as the product gases N_2O and H_2O escape immediately after being formed.

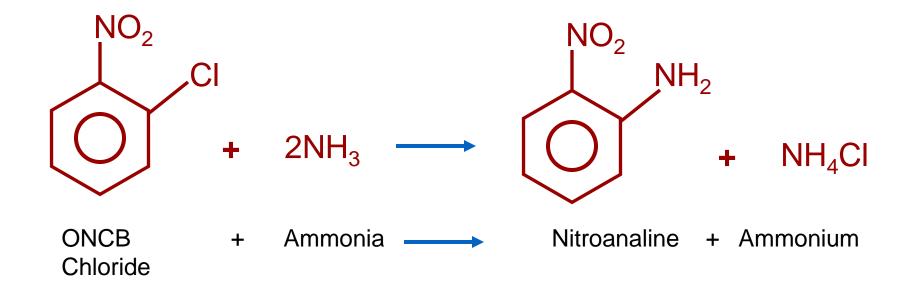

$$\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{\mathrm{Q}_{\mathrm{g}} - \mathrm{Q}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{A}}\mathrm{C}_{\mathrm{PA}}}$$


$$Q_g = (r_A V)(\Delta H_{Rx})$$

 $\begin{aligned} Q_r &= F_{A0} \Big[C_{PA} (T - T_0) + \theta_B (H_B - H_{B0}) \Big] + UA(T - T_a) \\ \end{aligned}$ COLLEGE OF ENGINEERING - كلية الهنديسة Tikrit University - جامعة تكريت - UA(T - T_a) \\ \end{aligned}

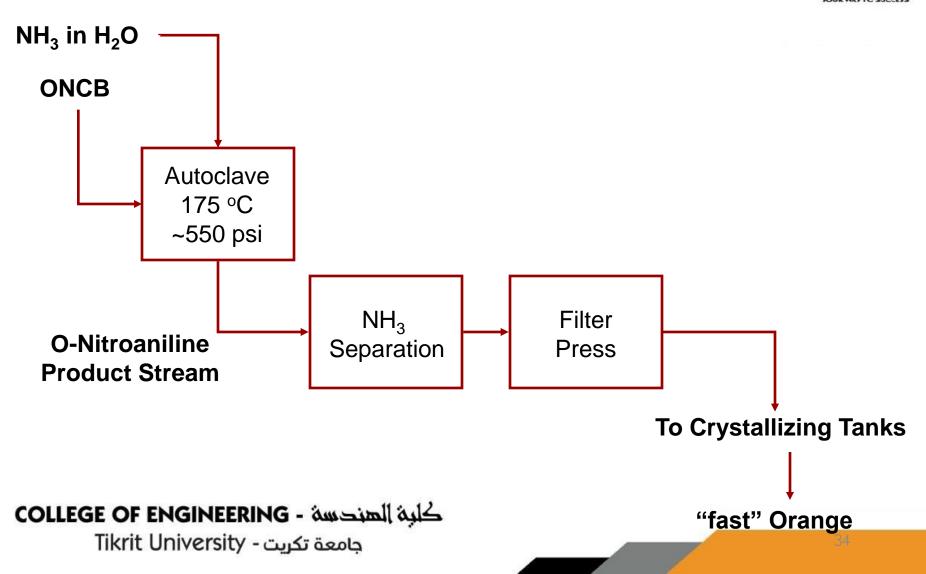
Unsteady State Energy Balance

Case 2 – Monsanto Chemical Company

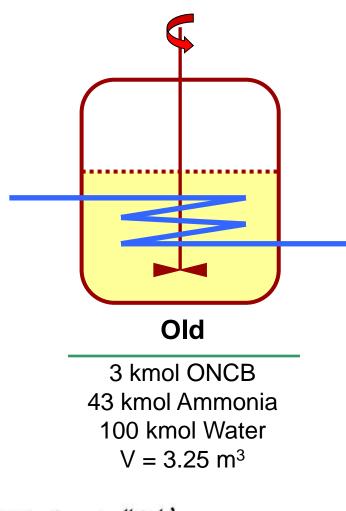

- Keeping MBAs away from Chemical Reactors
- The process worked for 19 years before "they" showed up!
- Why did they come?
- What did they want?

كلبة الهندسة - COLLEGE OF ENGINEERING

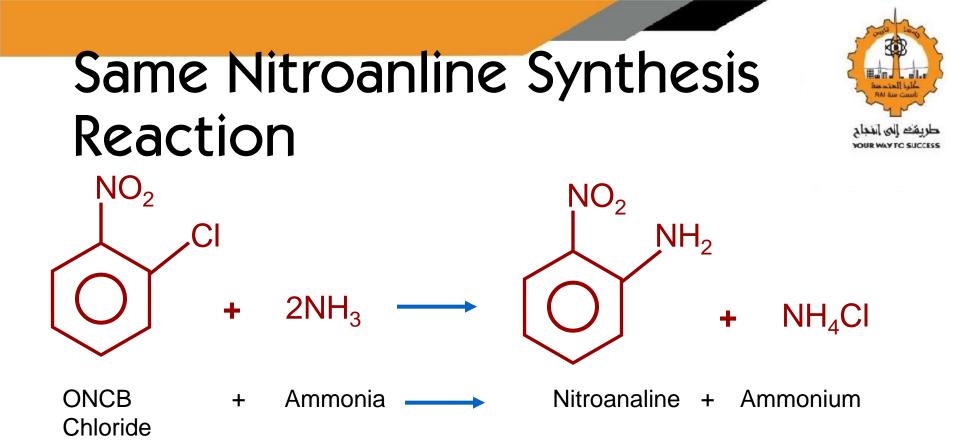
Nitroanline Synthesis Reaction



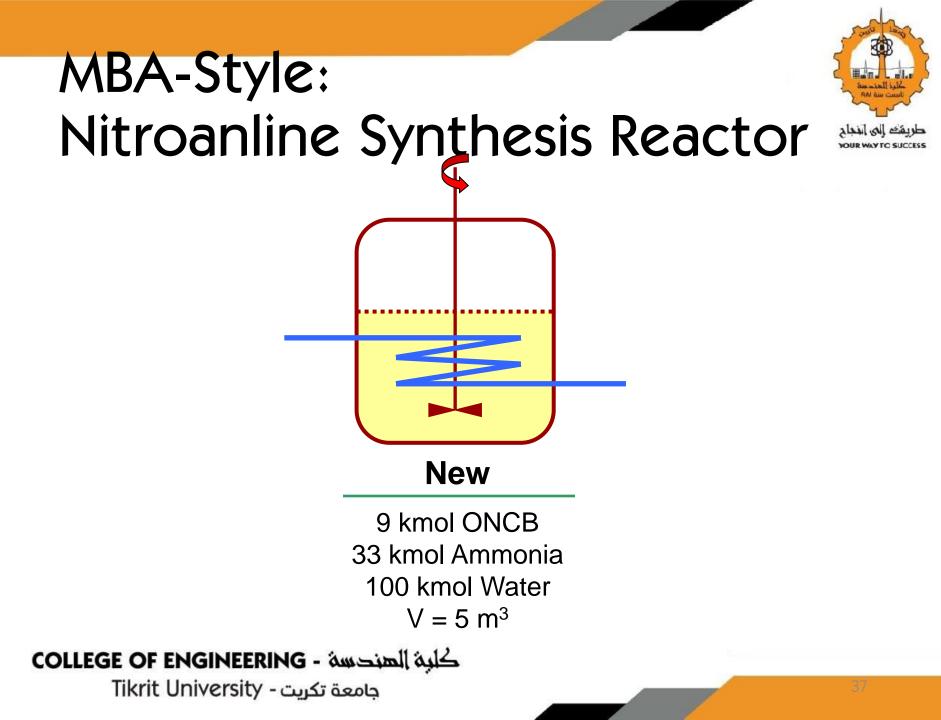
كلية الهندسة - COLLEGE OF ENGINEERING



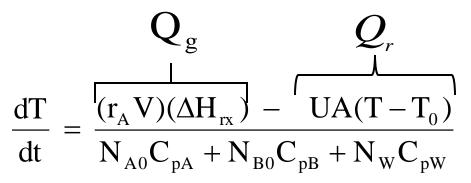
Nitroanline Synthesis Reaction



Nitroanline Synthesis Reactor


كلية الصندسة - COLLEGE OF ENGINEERING

Batch Reactor, 24 hour reaction time


Management said: TRIPLE PRODUCTION

كلية الصندسة - COLLEGE OF ENGINEERING

Batch Reactor Energy Balance

$$NC_{P} = N_{A0}C_{pA} + N_{B0}C_{pB} + N_{W}C_{pW}$$

$$\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{\mathrm{Q}_{\mathrm{g}} - \mathrm{Q}_{\mathrm{r}}}{\mathrm{NC}_{\mathrm{p}}}$$

3 COLLEGE OF ENGINEERING - منه

8

Batch Reactor Energy Balance $\frac{dT}{dt} = \frac{Q_g - Q_r}{NC_p}$

The rate of "heat removed" is

$$Q_{r} = \dot{m}_{c}C_{P_{c}}\left\{ \left(T_{a1} - T\right)\left[1 - exp\left(\frac{-UA}{\dot{m}_{c}C_{P_{c}}}\right)\right] \right\} \quad \text{Equation (12-13) p547}$$

For high coolant flow rates, \dot{m}_{c} , the maximum rate of heat removal is

$$Q_r = UA(T - T_a)$$

The rate of "heat generated" is $Q_g = (r_A V)\Delta H_{Rx} = (-r_A V)(-\Delta H_{Rx})$

$$-r_{A} = k_{1}C_{A}C_{B}$$
$$Q_{g} = k_{1}C_{A}C_{B}(-\Delta H_{Rx})$$

كلبة الهندسة - COLLEGE OF ENGINEERING

Batch Reactor Energy BalanceRecall $\frac{dT}{dT} = \frac{Q_r - Q_g}{NC_{P_c}}$

For isothermal operation at Qr = Qg, T = 448 K

$$Q_{g} = k(448 \text{ K})C_{A0}^{2}(1-X)(\Theta_{B} - X)(-\Delta H_{Rx})$$
$$Q_{r} = Q_{g}$$
$$\dot{m}_{c}C_{P_{c}}\left\{ (T_{a1} - T)\left[1 - \exp\left(\frac{-UA}{\dot{m}_{c}C_{P_{c}}}\right)\right] \right\} = (0.0001167)C_{A0}^{2}(1-X)$$

Vary \dot{m}_c to keep "heat removed" equal to "heat generation"

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

Isothermal Operation for 45 minutes

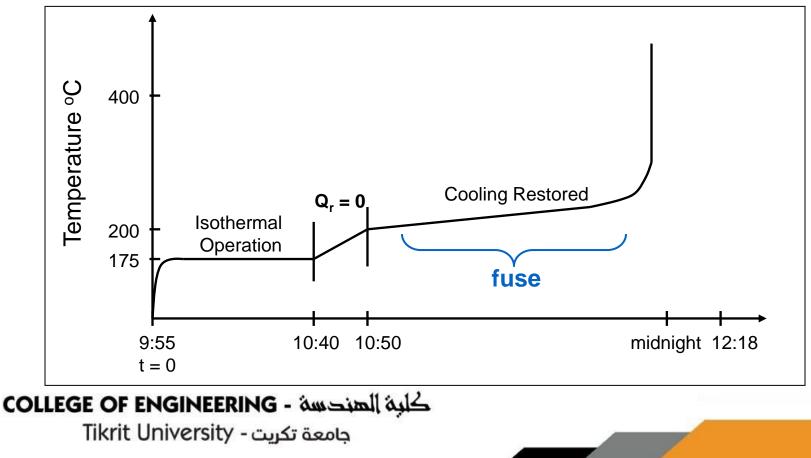
At the time the heat exchanger fails X = 0.033, T = 448 K $Q_g = r_A V \Delta H_{Rx} = 3850 k cal / min$

The maximum rate of removal at T = 448 K is $Q_r = UA(T - T_a) = 35.85(448 - 298) = 5378kcal / min$

 $Q_r > Q_g$ Everything is OK

COLLEGE OF ENGINEERING - كلبة المندسة جامعة تكريت - Tikrit University

Adiabatic Operation for 10 minutes


- $t = 45 \min X = 0.033$ T = 448K $t = 55 \min X = 0.0424$ T = 468K
- $Q_{g} = 6591 k cal / min$
- $Q_r = 6093 kcal / \min$
- $Q_g > Q_r$
- $\frac{dT}{dt} = \frac{Q_g Q_r}{NC_p} = 0.2^{\circ}C / \min$

كلية الهندسة - COLLEGE OF ENGINEERING

Temperature-Time trajectory

 $\frac{dT}{dt} = \frac{Q_q - Q_r}{NC_r} = 0.2 \,^{\circ}C \,/ \min$

Disk Rupture

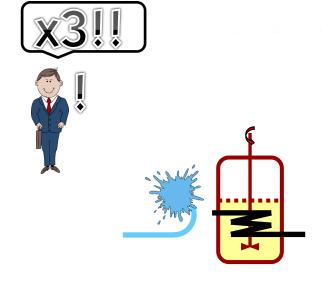
COLLEGE OF

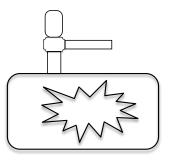
The pressure relief disk should have ruptured when the temperature reached 265°C (ca. 700 psi) but it did not.

If the disk had ruptured, the maximum mass flow rate out of the reactor would have been 830 kg/min (2-in orifice to 1 atm).

$$\begin{aligned} Q_r &= \dot{m}_{vap} \Delta H_{vap} + UA(T - T_a) \\ Q_r &= 449,000 \frac{kcal}{min} \\ Q_g &= 27,460 \frac{kcal}{min} \\ Q_r &>>> Q_g \\ \hline NO \ explosion \\ \hline E \ OF \ ENGINEERING - المنحسة المنحسة تكريت - Tikrit University - يامعة تكريت - Mathematical Additional Addi$$

All the following three things must have occurred for the explosion to happen


1. Tripled Production

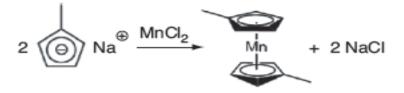

2. Heat Exchange Failure

3.Relief Valve Failure

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

Methylcyclopentadiene Manganese Tricarbonyl (MCMT)

كلبة الهندسة - COLLEGE OF ENGINEERING

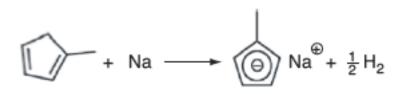


Production of methylcyclopentadienyl manganese tricarbonyl (MCMT)

Step 1a. Reaction between methylcyclopentadiene (MCP) and sodium in solvent of diethylene glycol dimethyl ether (diglyme, C₆H₁₄O₃) to produce sodium methylcyclopentadiene and hydrogen gas:

$$I$$
 + Na $\rightarrow O$ Na ^{\oplus} + $\frac{1}{2}$ H₂

Step 1b. At the end of Step 1a, MnCl₂ is added to the reactor. It reacts with sodium methylcyclopentadiene to produce manganese dimethylcyclopentadiene and sodium chloride:


Step 1c. At the end of Step 1b, CO is added. The reaction between manganese dimethylcyclopentadiene and carbon monoxide produces the final product, methylcyclopentadienyl manganese tricarbonyl (MCMT), a fuel additive.

Only consider Step 1

Desired Reaction

Undesired Reaction of Dygline

$$CH_3 - O - CH_2 - CH_2 - O - CH_2 - CH_2O - CH_3 \xrightarrow{Na} 3H_2 + misc(l) \& (s)$$

Simplified Model

Let A = methycylcopentadiene, B = sodium, S = Solvent (diglyme), and D = H_2 . These reactions are:

(1) $A + B \rightarrow C + 1/2 D$ (gas) $-r_{1A} = -r_{1B} = k_{1A}C_AC_B$ (2) $S \rightarrow 3 D$ (gas) + miscellaneous liquid and solid products $-r_{2S} = k_{2s}C_S$ $\Delta H_{Rx1A} = -45,400 J/mol$ COLLEGE OF ENGINEERING - خلبة المنحسة $\Delta H_{Rx2S} = -3.2 \times 10^5 J/mol$

YOUR WAY TO SUCCESS

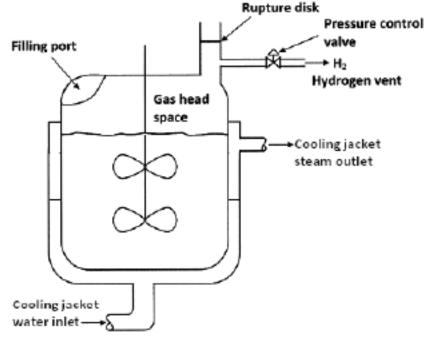


Figure E13-6.2 Reactor

كلية الهندسة - COLLEGE OF ENGINEERING

Solution

(1) Reactor Mole Balances

Reactor (Assume Constant Volume Batch)

Liquid

$$\frac{dC_{\rm A}}{dt} = r_{\rm 1A} \tag{E13-6.1}$$

$$\frac{dC_{\rm B}}{dt} = r_{\rm IA} \tag{E13-6.2}$$

$$\frac{dC_{\rm S}}{dt} = r_{\rm 2S} \tag{E13-6.3}$$

$$\frac{dP}{dt} = \left(F_{\rm D} - F_{vent}\right) \frac{RT_{\rm H}}{V_{\rm H}}$$

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

(2) Rates Laws:

(1) $-r_{1A} = k_{1A}C_AC_B$ (E13-6.11)

$$k_{1A} = A_{1A} e^{-E_{1A}/RT}$$
(E13-6.12)

(2)
$$-r_{2S} = k_{2S}C_S$$
 (E13-6.13)

$$k_{2S} = A_{2S} e^{-E_{2S}/RT}$$
(E13-6.14)

Net Rates:

 $r_{\rm A} = r_{\rm B} = r_{\rm 1A}$ (E13-6.17)

$$r_{\rm S} = r_{\rm 2S}$$
 (E13-6.18)

$$r_{\rm D} = -\frac{1}{2}r_{\rm 1A} + -3r_{\rm 2S}$$
 (gas generated) (E13-6.19)

-

(4) Energy Balance:

Applying Equation (E13-18) to a batch system ($F_{i0} = 0$)

$$\frac{dT}{dt} = \frac{V_0 [r_{1A} \Delta H_{Rx1A} + r_{2S} \Delta H_{Rx2S}] - UA (T - T_a)}{\sum N_j C_{P_j}}$$
(E13-6.24)

Substituting for the rate laws and $\sum N_j C_{P_j} = 1.26 \times 10^7 \text{ J/K}$

$$\frac{dT}{dt} = \frac{V_0 \left[-k_{1A} C_A C_B \Delta H_{Rx1A} - k_{2S} C_S \Delta H_{Rx2S} \right] - UA \left(T - T_a \right)}{1.26 \times 10^7 \left(J/K \right)}$$
(E13-6.25)

 $\Delta H_{\text{Rx1A}} = -45,400 \text{ J/mol}$ $\Delta H_{\text{Rx2S}} = -3.2 \times 10^5 \text{ J/mol}$

كلية الهندسة - COLLEGE OF ENGINEERING

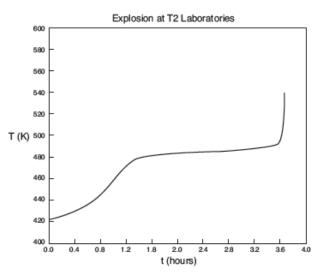
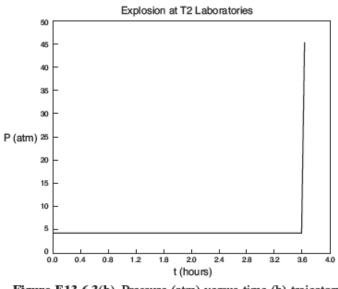



Figure E13-6.3(a) Temperature (K) versus time (h) trajectory.

COLLEGE OF ENGINEE Figure E13-6.3(b) Pressure (atm) versus time (h) trajectory.

Summary

- In this lecture, we covered:
- - Case studies on industrial accidents and their causes.
- Analysis of energy balance and heat effects in reactors.
- - Importance of safety mechanisms and preventive measures.
- Lessons learned to improve reactor safety and reliability.
- These insights are crucial for designing safe and efficient chemical processes.

كلية الصندسة - COLLEGE OF ENGINEERING