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Introduction

• Chemical Reaction Engineering (CRE) emphasizes 
safety in reactor design and operation.

• This lecture focuses on case studies of industrial 
accidents, exploring causes and preventive 
measures to ensure safety in chemical processes.



Topics to be Addressed

• - Case Studies: Ammonium Nitrate, Monsanto, and 
T2 Labs Explosions

• - Energy Balance and Heat Effects in Reactors

• - Safety Mechanisms and Preventive Measures

• - Lessons Learned from Industrial Accidents



Objectives

• By the end of this lecture, students will be able to:

• - Understand the principles of reactor safety and 
energy balance.

• - Analyze causes of industrial accidents and their 
prevention.

• - Apply safety measures in reactor design and 
operation.

• - Learn from case studies to mitigate risks in 
chemical processes.



Introduction

• Understanding energy balance, heat effects, and 
safety mechanisms is critical for preventing 
disasters.

• This session covers notable accidents such as the 
ammonium nitrate explosion, Monsanto explosion, 
and T2 Laboratories explosion, and lessons learned 
from these events.



CSTR with Heat Effects
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Review Last Lecture



 

dT

dt
=

FA 0

N iCPi
G T( )−R T( ) 

G T( ) = rAV( ) HRx 

R T( ) =CPS 1+( ) T −TC 

 

 =
UA

FA 0CP 0

 

TC =
T0 +Ta

1+

Energy Balance for CSTRs
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Review Last Lecture



R(T)

T
Variation of heat removal line with inlet temperature.

Increasing T0

 

R T( ) =CPS 1+( ) T −TC 

Energy Balance for CSTRs
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Review Last Lecture



R(T)

T0Ta T

κ=∞

κ=0

Increase κ

Variation of heat removal line with κ (κ=UA/CP0FA0)

 

R T( ) =CPS 1+( ) T −TC 

Energy Balance for CSTRs
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Review Last Lecture



Variation of heat generation curve with space-time.

Multiple Steady States (MSS)
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Review Last Lecture



Reversible Reaction
Gas Flow in a PBR with Heat Effects
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Reversible Reaction
Gas Flow in a PBR with Heat 
Effects
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UA = 73,520

UA = 0

A  B



Adiabatic:

Gas Phase Heat Effects
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Effect of adding inerts on adiabatic equilibrium conversion

 

X =
T −T0( ) CPA + ICPI 

−HRx
 ,   T = T0 +

−HRx( )
CPA + ICPI

X

T
T0

=I

0I =

Adiabatic Equilibrium 

Conversion



Adiabatic Exothermic Reactions
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The heat of reaction for endothermic reaction is positive, i.e., 

Energy Balance :

     

     

We want to learn the effects of adding inerts on conversion. How the 

conversion varies with the amount, i.e., I, depends on what you vary and 

what you hold constant as you change I. 

 

 

A ⎯ → ⎯ B

 

HRx = +15
kcal

mol

 

T = T0 −
HRxX

CPA
+ ICP I

   and   X =
CPA

+ CP I
I( )T0 − T( )

HRx



 

dX

dV
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−rA

FA0
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dV
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kCA0 1− X( )
0CA0

=
k

0

1− X( )

A. First Order Reaction

Combining the mole balance, rate law and stoichiometry 

    
  Two cases will be considered 
  Case 1 Constant 0, volumetric flow rate
  Case 2: Variable 0, volumetric flow rate
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A.1. Liquid Phase Reaction

For Liquids, volumetric flow rates are additive. 
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What happens when we add Inerts, i.e., vary Theta I??? It all depends 

what you change and what you hold constant!!!
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Effect of Adding Inerts to an Endothermic Adiabatic Reaction



A.1.a. Case 1. Constant 0
To keep 0 constant if we increase the amount of Inerts, 
i.e., increase I we will need to decrease the amount of 
A entering, i.e., A0. So I  then A0 
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T = T0 −
HRxX

CPA
+ ICP I



A.1.a. Case 2. Constant A, 
Variable 0
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A.2. Gas Phase 
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 Without Inerts                              With Inerts and A

     

     

Taking the ratio of CTA to CTI

     

Solving for I

     

We want to compare what happens when Inerts and A are fed to the case when 

only A is fed. 
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Nomenclature note:  Sub I with Inerts I and reactant A fed

                           Sub A with only reactant A fed

FTI = Total inlet molar flow rate of inert, I, plus reactant A, FTI = FA0 + FI0

FTA = Total inlet molar flow rate when no Inerts are fed, i.e., FTA = FA0

PI, TI = Inlet temperature and pressure for the case when both Inerts (I) and A are fed

PA, TA = Inlet temperature and pressure when only A is fed

CA0 = Concentration of A entering when no inerts are presents

CTA = Total concentration when no inerts are present 

CTI = Total concentration when both I and A are present 

CA0I = Concentration of A entering when inerts A are entering 

I = Entering volumetric flow rate with both Inerts (I) and reactant (A)
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A.2.a.  Case 1
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Maintain constant volumetric flow, 0, rate as inerts are added. I.e., 0 = 

I = A. Not a very reasonable situation, but does represent one extreme. 

Achieve constant  0 varying P, T to adjust conditions so term in 

brackets, [  ], is one.

 

For example if I = 2 then I will be the same as A, but we need the 

entering pressures PI and PA to be in the relationship PI = 3PA with TA = TI
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A.2.a.  Case 1

That is the term in brackets, [  ], would be 1 which would 
keep 0 constant with I = A = 0. Returning to our 
combined mole balance, rate law and stoichiometry 
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A.2.b.Case 2: Variable 0 Constant T, P i.e., PI = PA, TI = TA 
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B. Gas Phase Second Order Reaction 
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   Pure A                                            Inerts Plus A 
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B. Gas Phase Second Order Reaction 
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Case 1 – Ammonium Nitrate Explosion
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Massive blast at Terra plant kills four. 



Example 1: Safety in Chemical Reactors
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H2O

N2O 

 
 
 

Gas

200°F

510°F

Liquid

X

 

Ta0

 

NH4NO3 → N 2O + 2H 2O 

Ta

 

T0 = 200F

mA0 = 310lb h

 

17%H2O
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NH4NO3

M  500 lb
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Example 1: Safety in Chemical Reactors
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Only liquid A in the vat as the product gases N2O 

and H2O escape immediately after being formed.



Unsteady State Energy Balance 
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Qr = FA0 CPA
T − 660( )+ W 1134+ CPW

T − 960( )( ) 

FA0 = 0

dT

dt
=
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N iCPi
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If the flow rate is shut off, the temperature will rise (possibly to point of explosion!)



Case 2 – Monsanto Chemical 
Company
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• Keeping MBAs away from Chemical Reactors

• The process worked for 19 years before “they” showed 
up!

• Why did they come?

• What did they want?



Nitroanline Synthesis Reaction
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NO2

NH2

NO2

Cl

+     2NH3 +     NH4Cl

ONCB               +      Ammonia                         Nitroanaline    +   Ammonium 

Chloride



Nitroanline Synthesis Reaction
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Autoclave

175 oC

~550 psi

NH3 

Separation

Filter

Press

NH3 in H2O

ONCB

O-Nitroaniline 

Product Stream

“fast” Orange

To Crystallizing Tanks



Nitroanline Synthesis Reactor
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Old

3 kmol ONCB

43 kmol Ammonia

100 kmol Water

V = 3.25 m3



Same Nitroanline Synthesis 
Reaction
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Batch Reactor, 24 hour reaction time

Management said: TRIPLE PRODUCTION

NO2

NH2

NO2

Cl

+     2NH3 +     NH4Cl

ONCB               +      Ammonia                         Nitroanaline   +    Ammonium 

Chloride



MBA-Style: 
Nitroanline Synthesis Reactor
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New

9 kmol ONCB

33 kmol Ammonia

100 kmol Water

V = 5 m3
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Batch Reactor Energy Balance 



The rate of “heat removed” is

For high coolant flow rates,       , the maximum rate of heat removal is

The rate of “heat generated” is
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Q r = UA T − Ta( )
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Batch Reactor Energy Balance 



Recall

For isothermal operation at Qr = Qg, T = 448 K

Vary        to keep “heat removed” equal to “heat generation”
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cm

Batch Reactor Energy Balance 
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Isothermal Operation for 45 minutes
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Adiabatic Operation for 10 minutes
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The pressure relief disk should have ruptured when the temperature 

reached 265°C (ca. 700 psi) but it did not.

If the disk had ruptured, the maximum mass flow rate out of the 

reactor would have been 830 kg/min (2-in orifice to 1 atm).

No explosion

Disk Rupture



All the following three things must have 
occurred for the explosion to happen
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1. Tripled Production

2. Heat Exchange Failure

3.Relief Valve Failure

x3!!
!



Case 3 – Manufacture of Fuel Additive
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Methylcyclopentadiene Manganese Tricarbonyl (MCMT)
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Production of methylcyclopentadienyl manganese tricarbonyl (MCMT). 
Step 1a. Reaction between methylcyclopentadiene (MCP) and sodium in a 
solvent of diethylene glycol dimethyl ether (diglyme, C6H14O3) to
produce sodium methylcyclopentadiene and hydrogen gas:

Step 1b. At the end of Step 1a, MnCl2 is added to the reactor. It reacts with 
sodium methylcyclopentadiene to produce manganese 
dimethylcyclopentadiene and sodium chloride:

Step 1c. At the end of Step 1b, CO is added. The reaction between 
manganese dimethylcyclopentadiene and carbon monoxide produces the 
final product, methylcyclopentadienyl manganese tricarbonyl (MCMT), a fuel 
additive.



Only consider Step 1

Desired Reaction

Undesired Reaction of Dygline

Simplified Model

Let A = methycylcopentadiene, B = sodium, S = Solvent (diglyme), and D = H2.

These reactions are:
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(1) A + B →  C + 1/2 D (gas)

(2) S →  3 D (gas) + miscellaneous liquid and solid products

 

−r1A = −r1B = k1ACACB

−r2S = k2sCS

 

HRx1A = −45,400  J mol

HRx2S = −3.2 105
 J mol
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Case 3 – Manufacture of Fuel Additive
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Case 3 – Manufacture of Fuel Additive
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(2) Rates

 Laws:

 Net Rates:

(3) Stoichiometry – Liquid Phase

Case 3 – Manufacture of Fuel Additive



 

HRx1A = −45,400  J mol

HRx2S = −3.2 105
 J mol

52

(4) Energy Balance:

 

=1.26 107 J K

Case 3 – Manufacture of Fuel Additive
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Summary

• In this lecture, we covered:

• - Case studies on industrial accidents and their causes.
• - Analysis of energy balance and heat effects in 

reactors.
• - Importance of safety mechanisms and preventive 

measures.
• - Lessons learned to improve reactor safety and 

reliability.

• These insights are crucial for designing safe and 
efficient chemical processes.
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